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INTRODUCTION

Those interested in antimicrobial agents and chemother-
apy culture microorganisms for a variety of tests. These
include susceptibility assessments, bioassays, studies of the
interactions between antibiotics and host defenses, and the
in vitro simulation of in vivo conditions for purposes of
extrapolation (19). The specific physiological state of the
organisms used, especially surface properties, greatly influ-
ences the outcome of all such tests (7, 12, 13, 37). An
underrecognized but major determinant of such physiology
is the rate of cell replication. Recent excellent reviews have
been concerned with growth rates in nature (54, 79) and the
metabolic consequences of slow growth (15).
A characteristic response of a population of replicating

microorganisms when an adverse environmental change
occurs is to reduce the growth rate, perhaps to zero. Slowly
growing organisms generally survive adversity better than
do those replicating quickly (12, 13, 93). The precise nature
of the physiological response is influenced by the particular
nature of the adversity, be it an inhibitor or the lack of an
essential nutrient(s). Many environmental changes exert
their main effect on the proton motive force, which influ-
ences the phenotypic response of the bacterium, including
the growth rate (54, 57). The growth rate and nutrient
limitation also influence plasmid stability, including that in
vivo (13).

Spore formation is the supreme example of biological
survival. It appears significant that the probability of spore
formation is inversely related to the growth rate of the
vegetative culture (20; P. Gilbert, P. J. Collier, and M. R. W.
Brown, Antimicrob. Agents Chemother., in press). It also
seems probable that several resistance mechanisms are
linked to a reduced growth rate for nonsporeformers (13).
Thus, the growth rate per se influences physiology, as do the
specific cultural circumstances. It is experimentally difficult,
but nevertheless possible, to separate the two.
The closed environment of a batch culture is gradually

modified by the cells until it no longer supports rapid growth.
Controlled changes in doubling times (td) are typically
brought about by alterations in the medium or temperature;
these changes also occur in vivo (84). Such factors may
independently influence cell physiology. It is inherently
difficult, therefore, to study the influences on cell physiology
and associated properties of the growth rate per se in a batch
culture. It has long been known that sub-MICs of some
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antibiotics, when added to logarithmic-phase batch cultures,
rapidly change td in a reproducible way. Quantitative rela-
tionships between antibiotic concentrations and td have long
been used to assess the possible synergistic action of com-
binations (9, 32, 33).
The use of population kinetics to define the logarithmic

phase of a batch culture can be physiologically misleading.
For example, nutrient-depleted batch culture cells are typi-
cally in the stationary phase. Changes in cell properties,
however, may take place several generations before the
onset of the stationary phase because of reductions in the
availability of specific nutrients. Magnesium-depleted Pseu-
domonas aeruginosa in batch cultures loses susceptibility to
EDTA and polymyxin B, depending on other metal cations
in the medium. This susceptibility is fully restored only after
about three generations in magnesium-plentiful medium (10).
Similarly, in batch cultures iron-depleted media derepress
high-affinity iron uptake systems in Klebsiella pneumoniae
about three generations before the onset of the stationary
phase (94). The use of logarithmic-phase cells therefore
requires that they are harvested several generations both
before the onset of the stationary phase and after inocula-
tion. If not, they often demonstrate some of the properties of
stationary-phase cells or of the inoculum or of both. The
presence of logarithmic replication is therefore no guarantee
of a constant and reproducible cell envelope and hence of
associated properties (7, 37).
The presence of iron-regulated membrane proteins in the

outer membrane of gram-negative bacteria and the produc-
tion of siderophores are often taken as evidence of iron
deprivation. These and other envelope changes, although
related to nutrient deprivation, can nevertheless be pro-
duced in vitro by rapidly growing bacteria that have become
adapted to acquiring iron or other nutrients under such
conditions while maintaining the maximum specific growth
rate (PRmax) (13, 97). Consequently, long in vivo td (see
below) may be the result either of deprivation of a nutrient(s)
other than iron (7, 84a) or of the presence of growth-
inhibitory substances or antibodies directed at surface struc-
tures involved in nutrient uptake, e.g., iron-regulated mem-
brane proteins and porins (13).
An open continuous culture can maintain cells growing

under steady-state conditions (45, 86). In a chemostat the
medium has an excess of all nutrients except for one at a
growth-limiting concentration. The existence in a chemostat
of an equilibrium cell mass is a consequence of the exponen-
tial loss of cells resulting from the dilution rate (D) (volume
changes per hour) being equal to the specific growth rate (1)
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and related to td as D = ,u = ln2/td. Thus, the chemostat
enables the study of growth rate effects per se. Quantita-
tively defined salts media have been derived to yield cultures
in which a specific essential nutrient is depleted while others
are present in controlled excesses (17, 55).

In vivo growth rates appear to vary from slow, perhaps
zero, to fast. They may generally correspond to infections
that are chronic or in the early stages of the acute phase (13,
16, 84a, 93). The td of an invading organism contributes to
the outcome of an infection. The ability to take up low levels
of a nutrient (93), in addition to generating a characteristic
cell envelope, influences the td and thus the attainment of a

microbial population sufficient to harm the host. Such con-

siderations are significant in selection. A low WUmax and a high
affinity (low Ks) for the substrate favor selection at low
nutrient levels (44, 49).
Many in vivo studies do not distinguish the contribution of

host clearance to observed td. True td can be measured by
using nonreplicating genetic markers or temperature-sensi-
tive mutants (not multiplying in vivo) (5, 13, 80, 84a).
Recently, the frequency of dividing cells, calibrated with
chemostat cultures at different td, was used to study td in
various experimental infections (R. M. Cozens, P. Sulc, B.
Hengstler, S. Kunz, E. A. Konopka, and 0. Zak, Program
Abstr. 26th Intersci. Conf. Antimicrob. Agents Chemother.
abstr. no. 572, 1986). In all cases replication was slow
relative to that in vitro, especially in chronic infections.

Sub-inhibitory concentrations of antibiotics may signifi-
cantly influence the host-pathogen interaction (60). Many
studies use concentrations which lengthen td. The influence
of td on the observed effects is reduced or eliminated if drug
concentrations which have little or no effect on td are used
(25, 50-53, 66).
The td of a culture not only influences cell physiology and

hence the outcome of susceptibility tests but also, especially
with gram-negative bacteria, may influence sensitivity to
handling procedures before and after testing (29). Thus,
logarithmic-phase cells are relatively sensitive to rapid
changes in temperature or osmolarity because of conven-
tional harvesting and posttest recovery procedures (29, 41).

MODULATION OF SUSCEPTIBILITY THROUGH
MODIFICATION OF THE CELL ENVELOPE

Batch culture studies. Given optimal growth conditions,
microbes grow rapidly and efficiently with generation times
as short as 20 min. In natural environments, rapid division is
unlikely to persist for long. More likely the rate and extent of
growth are governed by the availability of critical nutrients.
The imposition of nutrient deprivation causes the physiology
of the cells to adapt in a number of ways. (i) Usage of the
nutrient is rationed within the cell, through the use of
alternative substrates, modification of the cell composition,
and/or reduction in the amounts of cellular macromolecules
containing such nutrients. (ii) Alteration of the cell surface
occurs and increases the affinity of surface components for
the growth-limiting substrate to make uptake into the cytosol
more competitive. (iii) The cellular growth rate is reduced to
the maximum permissible (given i and ii).
Growth limitation by different nutrients therefore gives

rise to cells with reduced growth rates and coincidentally
radically altered envelopes (6, 10, 28, 46, 59). This result has
been widely reported to influence greatly susceptibility to
antimicrobial agents (6, 39) and to antibiotics (12, 24, 90) for
a wide range of organisms (8, 21, 22, 36, 46, 63, 65, 87). In
gram-negative bacteria susceptibility changes are often as-

sociated with modifications of both the outer and cytoplas-
mic membranes (28, 61, 71). Thus, the growth of gram-
negative species under phosphate limitation (P-lim)
decreases the cellular phospholipid content yet increases the
fatty and neutral lipid content (34), whereas under magne-
sium limitation (Mg-lim) diphosphatidylglycerol content is
slightly increased (8, 34, 35). These changes have been
associated with the susceptibility of cells to agents, such as
biguanides (14, 47, 56), gentamicin (74), and polymyxin (30,
95), which interact directly with specific envelope lipids.
Gilbert and Brown (34) showed that in batch cultures car-
bon-limited (C-lim) Escherichia coli was particularly suscep-
tible to the actions of substituted phenols and 2-phenoxyeth-
anol and related these changes to increased amounts of
lipopolysaccharide (LPS).

Al-Hiti and Gilbert (1) demonstrated with USP antimicro-
bial agent effectiveness test microorganisms that the resis-
tance to a number of commonly used preservatives varied
markedly after growth in liquid media producing C-lim,
P-lim, Mg-lim, or nitrogen limitation (N-lim). Generally,
changes in susceptibility have been correlated with changes
in the phospholipid (47, 48, 74, 88), porin protein (43, 94, 97),
LPS (85), and cation (10, 40, 64, 69) composition of the cell
envelope. These changes are thought to modify the action of
chemical antimicrobial agents in a number of possible ways.
(i) When the envelope itself contains the primary target for
drug action, a reduction in the relative abundance of the
target material may reduce the overall susceptibility of the
cells (70, 77). (ii) Alterations to the bacterial surface, partic-
ularly those affecting the acidic phospholipid content, LPS,
or surface charge, can affect the initial binding of antimicro-
bial agents (62). (iii) Hydrophilic agents must traverse the
outer membrane via its porin proteins (23, 73); a variation in
the porin protein content may therefore be reflected in the
susceptibility to such agents (70). (iv) The cell envelope can
be regarded as a series of lipophilic and hydrophilic com-
partments. Hydrophobic agents that are active at the cyto-
plasmic membrane or cytosol but unable to utilize porins
must pass through these compartments to gain access to
their sites of action (70). Passage is influenced not only by
the relative lipophilicity of the agent but also by the li-
pophilicity of each compartment. Thus, changes in envelope
composition affect the deposition of the antimicrobial agent
throughout the cell (42, 96).
The nutritional status of cells growing within their natural

habitats is almost impossible to assess (7, 37, 78). For
contaminants found in pharmaceutical agents, cosmetics,
and toiletries, the original growth conditions of the organ-
isms may include the manufacturing water, raw materials,
and product residues within the manufacturing plant and
other parts of the environment. One can only speculate
about the nature of particular nutrient deprivations associ-
ated with particular localized sites.

Continuous culture studies. The chemostat allows ,t to be
controlled with minimal changes in the physicochemical
environment of the cells. Many workers have used chemo-
stats to evaluate the effects of the growth rate on the
susceptibility of cells to antibiotics, disinfectants, and pre-
servatives. A general conclusion to be drawn from such
studies is that slowly growing cells are particularly recalci-
trant to chemical inactivation (6, 30, 35, 36, 89).

P. aeruginosa becomes particularly susceptible to poly-
myxin and EDTA as the growth rate is increased (30). The
susceptibility of this organism to various substituted phenols
altered with changing growth rate when the change was
associated with a marked alteration in the cellular LPS
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content (35). Increases in LPS resulted in decreased drug
uptake by the cells and decreased susceptibility.

Various studies have related changes in gross cell enve-
lope composition, brought about by alterations in the cellular
growth rate and the nutritional environment, to changes in
polymyxin susceptibility (30, 64). Particular studies have
implicated acidic phospholipids (48, 88), LPS (85), and the
presence of particular outer membrane proteins such as Hi
in P. aeruginosa (68, 82) as regulators of polymyxin binding
and/or permeation through the envelope. Although these
studies have clearly demonstrated the dependence of poly-
myxin action upon nutrient limitation and the growth rate,
the use of only one or two physiological variables may have
led to chance covariance. The susceptibility of E. coli to the
lytic action of polymyxin B was assessed at a variety of p.
values and under conditions of C-lim, N-lim, P-lim, and
Mg-lim (95). Mg-lim and P-lim cells demonstrated a trend of
increased resistance with increasing growth rate, whereas
C-lim and N-lim cells demonstrated increased susceptibility
as the growth rate increased. Divergent patterns such as
these allowed a number of models for resistance to poly-
myxin to be assessed. It was not possible to attribute
polymyxin susceptibility to any single envelope component
(phospholipid composition, LPS, 2-keto-3-deoxyoctulosonic
acid, cation content, outer membrane proteins, etc.); in-
stead, the patterns of susceptibility reflected, in a complex
manner, the presence of envelope proteins and acidic phos-
pholipids. Similar conclusions have been reached with P.
aeruginosa (11, 81).
The interrelationship of the chlorhexidine susceptibility of

E. coli and the growth rate for four nutrient limitations was
investigated by using chemostats (95). N-lim and C-lim
cultures showed an overall increase in susceptibility as the
growth rate increased, whereas Mg-lim and P-lim cultures
showed an opposite trend of increased resistance. At the
extremes of growth rate tested different orders of suscepti-
bility were observed between nutrient limitations. When p
was .0.08/h, susceptibility was seen to decrease with dif-
ferent nutrient limitations in the sequence C-lim > P-lim >
Mg-lim > N-lim, whereas at faster growth rates (p, .-0.4/h),
the sequence was altered to C-lim > N-lim > P-lim >
Mg-lim. Overall, C-lim cultures were most susceptible to
chlorhexidine, with this limitation showing the least depen-
dency on the growth rate. If chlorhexidine binding and
activity were dependent upon acidic phospholipid content or
some other cell envelope component, as has been suggested
by some earlier studies, then they ought to have demon-
strated opposite dependencies on the growth rate for Mg-lim
and P-lim versus C-lim and N-lim. No such correlation was
observed for specific phospholipids, LPS, outer membrane
protein composition, or the phospholipid/fatty and neutral
lipid ratio. All of these properties, however, changed signif-
icantly with the growth rate and nutrient limitation. The
results were not consistent with any simple model for
chlorhexidine binding and activity and probably reflected a
subtle involvement of phospholipid-LPS complexes and
cations in chlorhexidine permeation through the envelope
and binding to the cell membrane.

In a related study, the effects of the growth rate and
specific nutrient limitations on the activity of a homologous
series of n-alkyltrimethylammonium bromides against E. coli
were studied (96). The growth-inhibitory and bactericidal
activities of these compounds are parabolically related to the
n-alkyl chain length of these compounds and thereby to
compound lipophilicity (log P) (2). The chain length at which
optimal activity is demonstrated varies between different cell

types and reflects the lipophilicity and barrier properties of
the cell envelopes (42). Wright and Gilbert (96) argued that
alterations in envelope lipophilicity through changes in the
growth rate and nutrient limitation might be expected to
produce changes in optimal lipophilicity (log P.) and also in
the degree of activity demonstrated by the optimally active
compound. In all cases resistance was maximal at growth
rates of 0.1 to 0.23/h and decreased markedly at faster
growth rates. The compounds chosen represented one side
of a parabolic relationship between log P and biological
activity in which, for nutrient broth-grown cells, activity was
maximal for the compound with an n-alkyl chain length of 16
(cetrimide; USP). Activity was reduced for all the com-
pounds at slow growth rates (0.05 to 0.2/h) and therefore
suggested an overall increase in envelope lipophilicity fol-
lowed, as the growth rate increased, by a steady decrease.
The effects upon activity would be expected and were
observed to be greatest for those compounds with a log P
closest to the log PO (cetyltrimethylammonium bromide).
Although similar trends were observed for all four nutrient
limitations, C-lim cultures were the most resistant to the
agents and showed a 10-fold variation in susceptibility,
whereas P-lim cultures were the most susceptible and
showed an approximate 1,000-fold change in susceptibility.
The results of this study therefore supported the hypothesis
that the growth rate and nutrient limitation alter the overall
lipophilicity of the cell envelope and thereby influence the
optimal value of log P required by compounds to traverse it.

Continuous culture techniques have also been extensively
used to model natural open-growth systems, such as infec-
tions, to control the growth rate and to apply particular
nutrient deprivations. With such techniques, the growth rate
and nutrient deprivation have been identified as fundamental
modulators of antibiotic activity. From such studies it has
become apparent that the antibiotics ceftizoxime and ceftri-
axone have no activity against slowly growing cultures of E.
coli, irrespective of the growth-limiting nutrients studied (18,
90). In contrast, the P-lactam CGP 17520 is particularly
effective against slowly growing cultures, with activity di-
rected against penicillin-binding protein 7 (18, 91). Since the
expression of penicillin-binding proteins is highly growth
rate dependent, 3-lactam antibiotic susceptibility is affected
(13, 18, 90, 92). The activity of polymyxin is governed by
nutrient limitation and p. and can be increased by up to
10-fold (27, 95). The aminoglycoside antibiotics tobramycin
and streptomycin are also growth rate dependent in their
action (67, 76), as are the newer quinolone agents (98, 99;
R. C. Cody, G. C. Cuchural, and M. Barza, 28th ICAAC,
abstr. no. 86, 1988). Such effects are not restricted to
antimicrobial susceptibility and have also been reported to
influence profoundly the immunogenicity of microbes (3, 13)
as well as susceptibility to host defenses (4, 31, 36) and
extracellular virulence factor production (72).

Cell size is altered widely as a function of p. (26, 38, 58, 75,
83). This alteration in turn causes changes in the cell surface
area/volume ratio. Exclusion resistance to antimicrobial
agents also varies with cell size (83), as does susceptibility to
drugs which bind strongly to or act at the cell envelope (e.g.,
polymyxin and tetracycline).
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